

Organic Chemistry_Revision_Set II

	DATE: 08-01-2022	TIME: 200mins			
1	Choose the correct relation that can be possible for an elementary reaction :				
	(A) Rate = $K[P]^1 [Q]^3$	(B) Rate = $K[P]^1[Q]$			
	(C) Rate = $K[P][Q]^{1/2}$	(D) Rate = K[P] [Q]			
2	Maltose is changed into monossacharide (Glucose), in p	presence of :-			
	(A) Maltase	(B) Zymase			
	(C) Diastase	(D) Sucrase			
3	2, 4 – dinitroaniline $\xrightarrow{i) \text{ NaNO}_2 / \text{HCI, 0°C}}$ Z				
	What is compound Z?				
	(A) (B)	(C) (D)			
4	Which is not a possible product of the following reaction H N N 1. excess MeI $2. Ag_2O$, heat	n?			
	(A)	^(B)			
	(C)	(D) All the above products are possible			
5	Which of the following amines will g	give the			
	(A) NH ₂	(B) NHCH ₃			
	(c) $N(CH_3)_2$	(D) NHC ₂ H ₅			

(D) None of the above

7	Which of the following is a	crystalline solid?		
	(A) Glass		(B) Rubber	
	(C) Plastic		(D) Sugar	
8	Hybridisation of B and N in	inorganic benzene respectively	are :	
	(A) _{sp, sp} ³		(B) sp ³ , sp ³	
	(C) sp ² , sp ²		(D) sp, sp	
9	Which of the following read preparation of 1° amines?	ction is not used for		
	(A) Reduction of oxime	(B) Reduction of amide	(C) Gabriel pthalimide reaction	(D) Reduction of isocyanides
10	Which of the following reag (I) Hydrogen cyanide (II) Hydroxylamine	gent is used to determine the pr	esence of carbonyl group in g	glucose?
	(III) Hydrogen iodide			
	(A) Only (I)		(B) Only (II)	
	(C) Both (I) and (III)		(D) Both (I) and (II)	
11	Which of the following read	ctions is appropriate for convert	ing acetamide to methanami	ne?
	(A) Hoffmann hypobromamide	e reaction	(B) Stephen's reaction	
	(C) Gabriel phthalimide synthe	esis	(D) Carbylamine reaction	
12	Nitration of aniline in stron	ng acidic medium also gives m-n	itroaniline because	
	(A) inspite of substituents nitro gr	oup always goes to only m-position	(B) in electrophilic substitution read directive	ctions amino group is meta
	(C) in absence of substituents nitr	o group always goes tom-position	(D) in acidic (strong) medium a	niline is present as anilinium ion
13	Name the process used for	preparation of HNO ₃		
	(A) Deacon's process		(B) Haber's process	
	(C) Ostwald's process		(D) Contact process	

14	The solvent that favours S_N	2 mechanism :		
	(A) Water		(B) Alcohol	
	(C) Acid		(D) DMF	
15	$(CH_3)_2CO \xrightarrow{NH_2OH}_{H^+} $	$A \xrightarrow{H_2/Ni} B$		
	The compound B is			
	(A)	(B)	(C)	(D)
	СН ₃ СНСН ₃	$CH_2 = NH = CH_2$	СН ₃ ——СН——NHOH	$CH_3 - CH_2CH_2NH_2$
			 CH ₂	0 1 1 1
	NH ₂		3	
16	Which compound will liberat solution of NaHCO ₃ ?	e CO ₂ from aqueous		
	(A) CH₃OH	(B) CH ₃ NH ₂	(C) CH ₂)₄N ⁺ OH ⁻	(D) [⊕] –
				CH ₃ NH ₃ CI
17	Which of the following is an	amorphous solid?		
	(A) Tar		(B) Graphite	
	(C) Blue vitriol		(D) Copper	
10				
10	Which of the following reage	ents will be able to distinguish	n between 1-butyne and 2-bu	tyne?
	(A) NaNH ₂		(B) HCI	
	(C) 0 ₂		(D) Br ₂	
10				
19	Which one of the following s	statements regarding photoch	emical smog is not correct?	
	(A) Carbon monoxide does not play formation.	any role in photochemical smog	(B) Photochemical smog is an	oxidizing agent in character.
	(C)		(D)	
	involving solar energy.	through photochemical reaction	Photochemical smog does not	cause irritation in eyes and throat.
20				
	In aqueous phase, most bas	ic among the following is		
	(A) ammonia		(B) trimethylamine	
	(C) methylamine		(D) dimethylamine	
21	The major product (70% to 8 NH4HS is	80%) of the reaction between	m - dinitrobenzene with	
	(A)	(B)	(C)	(D)
	NO ₂	NHa	NHa	NH ₂
				-
		HS		HS NH ₂
	~ `NO ₂		~~ `NO ₂	
22				
	Which of the following is bio	odegradable polymer :-		
			(B) Nyion-2-Nyion-6	
	(C) Starch		(D) All of these	

23 The major product obtained in the following reaction is :

In a set of reactions *m*-bromobenzoic acid gave a product *D*. Identify the product *D*.

29

When ZnS and PbS minerals are present together, then NaCN is added to separate them in the froth floatation process as a depressant, because

(A)	(B)	(C)	(D)	
ZnS forms soluble complex Na2 [Zn(CN)]]	$Pb(CN)_2$ is precipitated while no effect on ZnS ore	they cannot be separated by adding NaCN	PbS forms soluble complex Na ₂ [Pb(CN) ₄]	

The compressibility factor for an ideal gas is :				
(A) 0	(B) 1			
(C) 2				

31

ÇHO KOH (2), उत्पाद (1) तथा (2) पहचानिये + HCHO ΟCΗ,

'X' हो सकता है

34 In the reaction: $\begin{array}{c} CH_{3}CH_{2} \\ H \end{array} C = O \xrightarrow{(i)KCN, H_{4}SO_{4}} D \text{ (D) is} \\ H \end{array}$

> (A) $\begin{array}{c} CH_{3}CH_{2}CH_{2}CH_{-}NH_{2}\\ \mid\end{array}$ OH

(c) $CH_3CHCH_2CH_2NH_2$ ЬН

(B) $CH_3CH_2CH-CH_2NH_2$

| OH

The order of reactivity of alkyl halide in the 35 reaction R-X + Mg-RMgX is

(A) RI > RBr > RCI	(B) RI > RBr > RCI
(C) RBr > RCl > Rl	(D) RBr > RI > RCI

For the following reactions,

	(i) $CH_3CH_2CH_2Br + KOH - CH_2CH = CH_2 + KBr + H$	→ H₂O.		
	(ii) H ₃ C CH ₃ + KOH	\rightarrow H ₃ C CH ₃ OH	+ KBr	
	(iii) \bigcirc + Br ₂ \longrightarrow	Br		
	Which of the follow correct?	wing statemen	ts is	
	(A) (i) is elimination reaction, (ii) is substitutive reaction	ition and (iii) is addition	(B) (i) is elimination, (ii) and	(iii) are substitution reactions
	(C) (i) is substitution, (ii) and (iii) are ac	ddition reactions	(D) (i) and (ii) are elimination rea	actions and (iii) is addition reaction
37	Identify the final product Z in the f $Me_2C = O + HCN \longrightarrow [X]$	following sequence of respect to $H_3O^+ \rightarrow Y \xrightarrow{H_2SO_4} H_2SO_4$	eaction: →Z	
	(A) (CH ₃) ₂ C(OH)COOH		(B) CH ₂ = C(CH ₃)COOH	
	(C) HO — CH ₂ CH(CH ₃)CO	ОН	(D) CH ₃ CH = CHCOOH	
38	Which of the following functional d	erivative of carboxylic	acid is least soluble in wate	r?
38	Which of the following functional d (A) acyl chloride	erivative of carboxylic	acid is least soluble in wate (B) ester	r?
38	Which of the following functional d (A) acyl chloride (C) amide	erivative of carboxylic	acid is least soluble in wate (B) ester (D) anhydride	ır?
38 39	Which of the following functional d (A) acyl chloride (C) amide The correct match betwo	erivative of carboxylic	acid is least soluble in wate (B) ester (D) anhydride tem 'III' is	ır?
38 39	Which of the following functional d (A) acyl chloride (C) amide The correct match betwo Item 'I' (Compound)	erivative of carboxylic een item 'I' and i Item 'II' (Rege	acid is least soluble in wate (B) ester (D) anhydride tem 'II' is nt)	r?
38 39	Which of the following functional d (A) acyl chloride (C) amide The correct match betwo Item 'I' (Compound) (A) Lysine	erivative of carboxylic een item 'I' and it Item 'II' (Rege (P) 1-naphthol	acid is least soluble in wate (B) ester (D) anhydride tem 'III' is	r?
38 39	Which of the following functional d (A) acyl chloride (C) amide The correct match betwo Item 'I' (Compound) (A) Lysine (B) Furfural	een item 'I' and it Item 'II' (Rege (P) 1-naphthol (Q) Ninhydrin	acid is least soluble in wate (B) ester (D) anhydride tem 'II' is	r?
38	Which of the following functional d (A) acyl chloride (C) amide The correct match betwo Item 'I' (Compound) (A) Lysine (B) Furfural (C) Benzyl alcohol	een item 'I' and it Item 'II' (Rege (P) 1-naphthol (Q) Ninhydrin (R) KMnO ₄	acid is least soluble in wate (B) ester (D) anhydride tem 'II' is int)	r?
38	Which of the following functional d (A) acyl chloride (C) amide The correct match betwoe Item 'I' (Compound) (A) Lysine (B) Furfural (C) Benzyl alcohol (D) Styrene	een item 'I' and it Item 'II' (Rege (P) 1-naphthol (Q) Ninhydrin (R) KMnO ₄ (S) Ceric ammo	acid is least soluble in wate (B) ester (D) anhydride tem 'II' is ont)	r?
38	Which of the following functional d (A) acyl chloride (C) amide The correct match betwo Item 'I' (Compound) (A) Lysine (B) Furfural (C) Benzyl alcohol (D) Styrene (A) (B)	een item 'I' and it Item 'II' (Rege (P) 1-naphthol (Q) Ninhydrin (R) KMnO ₄ (S) Ceric ammo	acid is least soluble in wate (B) ester (D) anhydride tem 'III' is ont)	r? (D)
38	Which of the following functional d (A) acyl chloride (C) amide The correct match betwee Item 'I' (Compound) (A) Lysine (B) Furfural (C) Benzyl alcohol (D) Styrene (A) (B) $A \rightarrow Q, B \rightarrow R, C \rightarrow S, D \rightarrow P A \rightarrow Q$	een item 'I' and it Item 'II' (Rege (P) 1-naphthol (Q) Ninhydrin (R) KMnO ₄ (S) Ceric ammo	acid is least soluble in wate (B) ester (D) anhydride tem 'II' is int) onium nitrate (C) $R A \rightarrow Q, B \rightarrow P, C \rightarrow R, D \rightarrow P$	(D) (D) → S A → R, B → P, C → Q, D → S
38 39 40	Which of the following functional d (A) acyl chloride (C) amide The correct match betwee Item 'I' (Compound) (A) Lysine (B) Furfural (C) Benzyl alcohol (D) Styrene (A) (B) $A \rightarrow Q, B \rightarrow R, C \rightarrow S, D \rightarrow P A \rightarrow Q$ Oxalic acid when reduced with zinc (A) Zinc oxalate	een item 'I' and if Item 'II' (Rege (P) 1-naphthol (Q) Ninhydrin (R) KMnO ₄ (S) Ceric ammo Q, $B \rightarrow P, C \rightarrow S, D \rightarrow F$ and dil.H ₂ SO ₄ gives	acid is least soluble in wate (B) ester (D) anhydride tem 'II' is onium nitrate (C) $R A \rightarrow Q, B \rightarrow P, C \rightarrow R, D \rightarrow$ (B) Glycolic acid	(D) $A > R, B \rightarrow P, C \rightarrow Q, D \rightarrow S$

41	A dihalo alkane on hydrolysis produces a ketone with formula C_3H_6O . The dihalo alkane is					
	(A) 2, 2 - dichloropropane	(B) 1, 1 - dichloropropane	(C) 1, 2 - dichloropropane	(D) 1, 3 - dichloropropane		
42	The convert a keto group i	into methylene group, the foll	owing reagent can be used :			
	(A) Na-Hg + Water		(B) Zn-Hg + Conc. HCl			
	(C) Zn + CH ₃ COOH		(D) Sn + Conc. HCl			
43	Under Wolf-Kishner reduct	tion conditions, the conversio	n which may be brought abou	t is		
	(A) benzaldehyde into benzyl alcohol	(B) cyclohexanol into cyclohexanone	(C) cyclohexanone into cyclohexanol	(D) benzophenone into diphenylmethane		
44	Identify Z in the series $CH_2 = CH_2 \xrightarrow{HBr} X \xrightarrow{HBr}$	$\xrightarrow{hydrolysis} Y \xrightarrow{Na_2CO_3} J_2 excess Z$				
	(A) C ₂ H ₅ I	(B) C ₂ H ₅ OH	(C) CHI ₃	(D) CH ₃ CHO		
45	Heavy water is a compoun	d of -				
	(A) Hydrogen and heavier isotope of oxygen		(B) Heavier isotope of hydrogen and heavier isotope of oxygen			
	(C) Oxygen and heavier isoto	pe of hydrogen	(D) None of the above			
46	The oxidation number of carbon in CH ₂ O is -					
	(A) + 4		(B) + 2			
	(C) 0		(D) -4			
47	Reactant A $\frac{K_2C_2}{H_2S}$	$\begin{array}{ccc} \mathbf{r}_{2}\mathbf{O}_{7} \\ \mathbf{SO}_{4} \end{array} & \mathbf{B} & \mathbf{PCl}_{5} \\ \end{array} & \mathbf{C} \end{array}$				
	$\frac{\text{Pd}, \text{BaSO}_4}{\text{H}_2} \rightarrow \text{CH}_3\text{CHO}_4$) what is A ?				
	(A) CH ₃ CH ₂ OH		(B) CH ₃ OCH ₃			
	(С) СН ₃ СНО		(D) CH ₃ COCH ₃			
48	Which of the following con	npounds does not reacts with	NaHSO3 ?			
	(A) HCHO		(B) C ₆ H ₅ COCH ₃			
	$C \to CH_3 C \cup CH_3$		CH3CHU			

The correct statement regarding a carbonyl compound with a hydrogen atom on its alpha-carbon, is

(A)

a carbonyl compound with a hydrogen atom on its alpha-carbon known as carbonylation

(C)

a carbonyl compound with a hydrogen atom on its alpha-carbon never equilibrates with its corresponding enol

(B)

a carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is rapidly equilibrates with its corresponding enol and this process is known as keto-enol tautomerism

(D)

a carbonyl compound with a hydrogen atom on its alpha-carbon rapidly equilibrates with its corresponding enol and this process is known as aldehyde-ketone equilibration.

52 The reaction

$$\begin{array}{c} \operatorname{RCH}_{2}\operatorname{CH}_{2}\operatorname{COOH} \xrightarrow{\operatorname{Red} P} \operatorname{RCH}_{2}\operatorname{CHCOOH} \\ | \\ Br \end{array}$$

is called

- (A) Reimer Tiemann reaction
- (C) Cannizzaro's reaction

53 The reaction

$$\operatorname{RCOOAG} + \operatorname{Br}_2 \xrightarrow[\operatorname{reflux}]{} R - \operatorname{Br} + \operatorname{AgBr} + \operatorname{CO}_2$$

is called

(A) Hunsdiecker reaction

(C) Friedel Craft's reaction

(B) Hell Volhard Zelinsky reaction

(D) Sandmeyer's reaction

(B) Kolbe's reaction

(D) Wurtz reaction

The compound shown below is the cyclic hemiacetal of

- (A) 5-hydroxyheptanal
- (C) 5-hydroxy-2-heptanone
- 62 Which will give a yellow precipitate with iodine & alkali?
 - (A) 2 hydroxyl propan
 - (C) o methyl toluene

(B) benzophenone

(D) acetamide

H₃C ∖

∠OH

CH₂CH₃

(B) 6-hydroxy-3-heptanone

(D) 6-hydroxyl heptanal

63

64 The product obtained by reaction of PhCHO & MeCHO are

66	The most probable structural formula for the compound whose empirical formula is C3H6O & which can react with Benedict reagent is					
	(A)	(B) CH ₃ CH ₂ CHO	(C) CH ₃ OCH = CH ₂	(D) CH ₂ = CHCH ₂ OH		
	0					
	CH ₃ CH CH ₂	2				
67	The no. of S-O-S bonds	; in S₃O₀ & no. of P-O-P bond	in H ₃ P ₃ O ₉ respectively :-			
	(A) 2, 3		(B) 4, 3			
	(C) 6, 12		(D) 3, 3			
68	Among the following w	hich one is most basic.				
	(A) NH ₂		(B) CHaNHa			
			$CH_2 = NH_2$			
			Ci -			
69	69. The alkyl halide that can be mad (a) RCI and RBr but not RF and F (c) RF, RCI, RBr and RI	le by free radical halogenation of alkanes are: RI (b) RF, RCI and RE (d) RF, RBr and RI but not RCI	Sr but not RI			
	(A) 1		(B) 2			
	(C) 3		(D) 4			
70	Which one of the follow	ving compounds shows the p	resence of intramolecular hvdi	rogen bond?		
	(A) H ₂ O ₂		(B) HCN	-		
	(C) Cellulose		(D) Concentrated acetic	acid		
71	Which of the following	oxide is amphoteric in natur	e?			
	(A) SnO ₂		(B) SiO ₂			
	(C) GeO ₂		(D) CO ₂			
	· · · _		-			
72	Which one of the following is least reactive in a nucleophilic substitution reaction?					
	(A) CH ₃ -CH ₂ Cl		(B) $CH_2 = CH - CH_2Cl$			
	(C) [CH ₃] ₃ C-Cl		(D) <i>CH</i> ₂ = <i>CHCl</i>			
/3	In calcium fluoride, having the fluorite structure, the coordination numbers for calcium ion (Ca ²⁺) and fluoride ion (F ⁻) are					
	(A) 8 and 4		(B) 4 and 8			
	(C) 4 and 2		(D) 6 and 6			
74	Chloropicrin is formed	when HNO3 reacts with				
	(A) CCl4		(B) CHCI3			
	(C) CH3Cl		(D) CH2Cl2			
75	Identify the incorrect re	eaction product :-				
	(A) Au + Aqua Regia → H[$[AuCl_4] + NO + H_2O$	(B) Cu + Conc HNO ₃ →Cu	$u(NO_3)_2 + NO_2 + H_2O$		
	(C) Zn + Very dilute HNO	$_3 \rightarrow Zn(NO_3)_2 + N_2O$	(D) $BF_3 + NaH \rightarrow B_2H_6 +$	NaF		

88 In the reaction, CCl ₃ CHO + NaOH \rightarrow X + Y.Then X and Y are				
	(A) CH ₂ Cl ₂ ,HCOONa		(B) CHCl ₃ , HCOONa	
	(C) CH ₂ Cl ₂ , CO ₂		(D) CHCl ₃ , HCOOH	
89	$ \overset{\mathbb{H}}{\overset{\mathbb{I}}{\underset{0}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}}\overset{\mathbb{I}}{\overset{\mathbb{I}}}}\overset{\mathbb{I}}{\overset{\mathbb{I}}}\overset{\mathbb{I}}{\overset{\mathbb{I}}}}\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}}}}\overset{\mathbb{I}}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}{\overset{\mathbb{I}}}{\overset{\mathbb{I}}}}}}}}}}$			
	(A) Cyano methanal		(B) 2-Oxo ethane nitrile	
	(C) Cyano ethanal		(D) Formonitrile	
90	Molecular formula C ₄ H ₈ O ₂ re	presents :-		
	(A) An acid only		(B) An ester only	
	(C) An alcohol only		(D) An acid and an ester also	
91	STATEMENT - 1 When butan-2-ol is treated w STATEMENT - 2 Pyridine is a weak base.	vith SOCI2 in presence of pyri	dine, inversion takes place.	
	(A) Statement – 1 is True, Statement – 2 is True; Statement – 2 is a correct explanation for Statement – 1.	(B) Statement – 1 is True, Statement – 2 is True; Statement – 2 is NOT a correct explanation for Statement – 1.	(C) Statement – 1 is True, Statement – 2 is False.	(D) Statement – 1 is False, Statement – 2 is True.
92	In which of the following rea	ctions, aldehydes & ketones a	are distinguished	
	(A) reactions with phenyl hydrazine	(B) reactions with hydroxylamine	(C) reactions with semicarbazide	(D) reactions with silver nitrate mixed with ammonia
93	Identify the final product (Z)	in the following sequence of	reactions.	\rightarrow (X) $\xrightarrow{HIO_4}$ (Y) $\xrightarrow{OH^-}$ (Z)
	(A)	(B)	сн ₃	(D)
	HO HO CH ₃	OH CH ₃	CH ₃	CH ₃ O
94	'Cis-1 A-nolvisonrene' is	0		
54	(A) Thermoplastic	(B) Thermosetting plastic	(C) Elastic (rubber)	(D) Resin
95	Chlorex which is a good solve (A) dichlorodimethyl ether (C) monochloro ether	ent for aromatic impurities is	: (B) dichlorodiethyl ether (D) diethyl ether	
96				
	Colloids can be prepared by	1		
	(A) Ultrafilteration		(B) Dialysis	
	(C) Peptisation		(U) Electrodialysis	
97	The correct order regarding	the electronegativity of hybri	d orbitals of C is :	
	(A) $sp < sp^2 < sp^3$		(B) $sp > sp^2 > sp^3$	
	(C) $sp > sp^2 < sp^3$		(D) $sp < sp^2 > sp^3$	

98	Identify the compound (Z), of molecular formula $C_{12}H_{18}$ which gives only two products of molecular formula C_4H_6O and $C_4H_6O_2$ on ozonolysis and both the products are oxidised to $C_4H_6O_2$ and $C_4H_6O_4$ with H_2O_2 . The product $C_4H_6O_4$ on heating gives anhydride.					
	(A)	(B)	(C)	(D)		
		\wedge	\wedge	\land		
				\sim		
	\checkmark		\checkmark	\checkmark		
99	Which of the following	compounds would be hyd	rolysed most easily ?			
	(A) C ₂ H ₅ Br	(B) CH ₃ Br	(C) $CH_2 = CH - Br$	(D) $CH_2 = CH - CH_2Br.$		
100	Which one of the follow	ving can be oxidised to th	e corresponding carbonyl co	ompound?		
	(A) 2-Hydroxypropane		(B) ortho-Nitrophe	nol		
	(C) Phenol		(D) 2-Methyl-2-hy	droxypropane		
101	Which one is the chara	cteristic feature of a free	radical :			
	(A) presence of positive of	charge	(B) presence of ur	npaired electron		
	(C) presence of even nun	nber of electrons	(D) associated wit	h high stability		
102	Which optically active	compound on reduction w	ith LiAlH ₄ will give optically	inactive compound ?		
	(A)	(B)	(C) CH ₃ -CH ₂ -CH-(СООН (D)		
	OCH ₃	OH	ĊH₂C	DH I OH		
103	Two electrons occupying the same orbital are distinguished by:					
	(A) azimuthal quantum n	umber	(B) spin quantum	number		
	(C) principal quantum nu	mber	(D) magnetic qua	ntum number		
104	Which of the following oxidation states is common for all lanthanoids?					
	(A) +2		(B) +3			
	(C) +4		(D) +5			
105	Identify Z in the f	ollowing sequence				
	CH ₃ CH ₂ I	$\rightarrow X \xrightarrow{Conc. HCl} Y \xrightarrow{dil.}$	$\xrightarrow{\text{HCl}} Z$			
	(A) CH ₃ COOCI	(B) CH ₃ CONH ₂	(C) CH ₃ COOH	(D) CH ₃ CH ₂ COOH.		
106	Which one of the following organo halogen compounds when heated with alcoholic potassium hydroxide does not undergo dehydrohalogenation reaction?					
	(A) sec-butyl chloride		(B) neopentyl chlo	pride		
	(C) iso-butyl chloride		(D) isopropyl-chlo	ride		
107	How many П and 🛛 bon	d are present in ethylene				
	(A) 500, 10		(B) 3□□, 3⊓			
	(C) 2 <u>□</u> , 4Π		(D) 4 <u>□</u> , 2⊓			
108	The ketone that does r	not form a cyanohydrin ea	sily is			
	(A) C ₆ H ₅ COCH ₃	(B) CH ₃ COCH ₃	(C) C ₆ H ₅ COC ₆ H ₅	(D) CH ₃ COC ₆ H ₅		

109	In the reaction $CH_3 - CH = CH - CH0$	$O \xrightarrow{\text{oxidizing}} CH_3 - CH =$	= CH – COOH,the oxidisir	ng agent can be
	(A) alkaline KMnO ₄	(B) acidified K ₂ Cr ₂ O ₇	(C) Benedict's solution	(D) all of the above
110	Nylon 6,6 is a strong crystall	line fibre due to the presence	of intermolecular forces whic	h are :
	(A) H-bond	(B) covalent bonds	(C) van der Walls' attractive forces	(D) ionic bonds
111	Of the following which one is	s classified as polyester polym	ner?	
	(A) Terylene		(B) Bakelite	
	(C) Melamine		(D) Nylon-6,6	
112	End product of the following $CH_3CH_2COOH \xrightarrow{Cl_2}{red P} -$	alcoholic KOH		
	(A) CH ₃ CHCOOH OH	(B) CH ₂ CH ₂ COOH OH	(C) CH ₂ = CHCOOH	(D) CH ₂ CHCOOH CI OH
113	Which of the following comp	ounds is not an aliphatic acid	?	
	(A) stearic acid	(B) palmitic acid	(C) oleic acid	(D) p-nitro benzoic acid
114	The atomic number of ceriur	n (Ce) is 58 The CORRECT ele	ctronic configuration of Ce ³⁺	ion is
			(B) [Kr]/If ¹	
	(C) [Xe]4f ¹³		(D) [Kr]4d ¹	
115	────────────────────────────────────	-→ COONa	+ CO ₂ C [*] is with in the product	t-
	(A) CO ₂	(B) COONa	(C) Both	(D) None
116	C ₅ H ₁₁ Br (A) when treated wi alcohol (C). (C) when heated	ith alcoholic KOH gives alkene with copper gives (B). The st	(B) while with aqueous KOH ructure of (A) is	gives
	(A)	(B)		
	CH ₃ -CH-CH-CH ₃	CH ₃	$CH_3 - CH - CH_3$	(D) CH ₃
	CH_3 Br	$CH_3 - C - CH_2 - CH_3$	Br	$CH_3 - CH_3$
		Br		Br
117	Predict the relationship betw	veen major products (P) and (Q)?	
		$\xrightarrow{\text{EtO}^{\Theta}}$ (P)		
	\longrightarrow Br $\frac{t}{t-E}$	BuO [⊕] → (Q) BuOH→ (Q)		
	(A) Positional isomers		(B) Functional isomers	

(C) Enantiomers

(D) chain isomers

In the following reaction,	
$C_6H_5CH_2Br \xrightarrow{1. Mg, Ether}{2. H_3O^+} X,$	
the product 'X' is	
(A) $C_6H_5CH_2OCH_2C_6H_5$	(B) C ₆ H ₅ CH ₂ OH
(c) C ₆ H ₅ CH ₃	(D) $C_6H_5CH_2CH_2C_6H_5$

119

120

121

122

Which of the following homologous series has incorrect general formula :-

(A) Alkyne C _n H _{2n-2}	(B) Alkanol C _n H _{2n+2} O
(C) Alkanal C _n H _{2n+1} O	(D) Carboxylic acid C _n H _{2n} O ₂
In the reaction	
$HC \equiv CH \xrightarrow{HgSO_4} X \xrightarrow{LiAlH_4} Y \xrightarrow{P;Br_2} Z,$	
Zis	

(A) Ethylidene bromide	(B) Ethyl bromide
(C) Bromobenzene	(D) Ethylene bromide
Which one of the following is a bacteriostatic dru	ug ?
(A) aminoglycosides	(B) penicillin-G
(C) ofloxacin	(D) ampicillin
Which substance is not greenish in colour?	
(A) FeSO4	(B) Cr2O ₃

(D) Fe(OH)₃

(c) $[Ni(H_2O)_6]^{2+}$

66.	Presence of nitro group in a benzene ring: (a) renders the ring basic (b) deactivates the ring towards nucleophilic substitution (c) deactivates the ring towards electrophilic substitution	
(A) 1	(u) activates the ring towards electrophilic substitution	(B) 2
(C) 3		(D) 4

124 Which of the following acid will form an (a) Anhydride on heating and (b) Acid amide on strong heating with ammonia?

125 Formalin is a (A) 40% aqueous solution of formaldehyde

COOH

(B) 60% aqueous solution of formaldehyde

(C) 50% aqueous solution of formaldehyde

(D) 75% aqueous solution of formaldehyde

126	$CH_{3}CHO \xrightarrow{PCl_{5}} P \xrightarrow{Alkaline} Q, then$	
	the compound Q is	
	(A) CH ₃ CHO	(B) HCHO
	(C) CH ₃ COCH ₃	(D) CH ₃ OCH ₃

127

The compound A on treatment with Na gives B, and with $PC1_5$ gives C. B and C react together to give diethyl ether. A, B and C are in the order

(A) $C_2H_5OH, C_2H_6, C_2H_5Cl$	(B) $C_2H_5OH, C_2H_5Cl, C_2H_5ONa$
(C) $C_2H_5Cl, C_2H_5, C_2H_5OH$	(D) $C_2H_5OH, C_2H_5ONa, C_2H_5Cl$

128

Optically active compounds among the following are,

1. 1-phenyl ethanol

2. 2-phenyl propan-1-ol

3. 2-phenyl propan-2-ol

4. 2-methyl propan-2-ol

(A) 2 and 3

(C) 3 and 4

(B) 1 and 2

(D) 2 and 4

129 Which of the following pairs of compounds are enantiomers?

Which of the following compounds undergoes nucleophilic substitution reaction most easily?

(D)

(A) Hydrochloric acid, HCl	(B) Ammonia, NH ₃
(C) Fructose, C ₆ H ₁₂ O ₆	(D) Acetic acid, $C_2H_4O_2$

C₆H₅

C₆H₅

C₆H₅

н

H₅C₆

н

The higher homologue of dimethylamine

(CH₃-NH-CH₃) has the structure :-

(A) CH ₃ -N-CH ₃ I CH ₃	(B) CH ₃ —CH ₂ —CH ₂ —NH ₂
(C) CH ₃ —NH—CH ₂ —CH ₃	(D) C H 3 - C H - C H 3 N H 2

141 Which of the following gas can be dried by conc. H₂SO₄?

(A) HCI	(B) HBr
(C) HI	(D) H ₂ S

142

The final product (Y) in the following sequence of chemical reactions is. CH_OH & X NaOHY+CH_OH $300^{0}C$

(A) An alkene	(B) A carboxylic acid
C) An aldehyde	(D) Sodium salt of carboxylic acid.

143

145

Column I (A) Cellulose

(B) Nylon-6, 6

(C) Protein

- Sucrose (D)

(A) (A - p,s); (B - q,r); (C - p,r); (D - r)

(C) (A - p,s); (B - q,r); (C - p,r); (D - s)

Column II

- (p) Natural Polymer
- (q) Synthetic polymer
- (r) Amide polymer
- (s) Glycoside polymer

(B) (A - r,s); (B - q,r); (C - p,r); (D - s)

(D) (A - p,s); (B - s,r); (C - p,r); (D - s)

144 Which of the following molecules is most suitable to disperse benzene in water ?

(A) a > b > c > d

(C) b > a > c > d

(D) b > d > a > c

152 has the IUPAC name :-(A) 3-Chloro-1-ethyl-2-methyl cyclopentane (B) 1-Chloro-3-ethyl-2-methyl cyclopentane (C) 4-Chloro-1-ethyl-5-methyl cyclopentane (D) All are correct 153 In an S_N1 reaction on chiral centres, there is (A) (B) inversion more than retention leading to partial 100% retention racemisation (C) (D) 100% racemisation. 100% inversion 154 a Zn+bNO₃⁻+cH⁺ ->d NH₄⁺ + e H₂O + f Zn⁺² a, b, c, d, e and f are -(A) a (B) a b f С d e b С d e 10 3 1 4 1 4 2 4 6 8 4 2 (C) a (D) a b d d f С е b С е 3 2 4 10 3 10 4 1 4 1 1 4 155 $CHO+(C_6H_5-CH_2CO)_2O$ NC H₅−CH₂COONa/ ∆ The product of the reaction: [X] will be: (C) (B) (D) **(A)** $C_6H_5 - CH = CH - COOH$ $C_6H_5-CH =$ CH = CH - COOHNO₂ NO OH NO 156 Which one is classified as a condensationpolymer ? (A) acrylonitrile (B) dacron (D) teflon (C) neoprene

157

Decreasing order of stability of given carbocations is

(1)
(2)
$$CH_2 = CH - {}^{\oplus}_{C}H_2$$
 (3) $C_6H_5 - {}^{\oplus}_{C}H_2$ (4) $CH_3 - {}^{\oplus}_{C}H - CH_3$
(A) $3 > 2 > 4 > 1$ (B) $1 > 3 > 4 > 2$
(C) $1 > 3 > 2 > 4$ (D) $3 > 2 > 1 > 4$

158	Which one of the following s	tatements is not true?			
	(A) Buna-S is a copolymer of bu	tadiene and styrene.	(B) Natural rubber is a 1,4-poly	mer of isoprene.	
	(C) In vulcanization, the formation o different chains make rubber ha	of sulphur bridges between rder and stronger.	(D) Natural rubber has the trans-co	nfiguration at every double bond.	
159	Identify (C) in the following s	sequenceC ₆ H ₁₃ COCI $\frac{H_2, Pd/Ba}{S, \Delta}$	$\xrightarrow{\text{(BaSO}_4)} (A) \xrightarrow{C_6H_{13}NH_2} (B) \xrightarrow{H_2/Ni} (C)$		
	(A) C ₆ H ₁₃ CH ₂ NHC ₆ H ₁₃	(B) C ₁₂ H ₂₅ CH ₂ NH ₂	(C) C ₆ H ₁₃ CHNH₂	(D) (C ₆ H ₁₃) ₂ CH ₃ N	
			с ₆ Н ₁₃		
160	The value of Planck's consta wavelength in nanometer of	nt is 6.63 x 10 ⁻³⁴ Js. The speed a quantum of light with frequ	l of light is 3 x 10 ¹⁷ nms ⁻¹ . Wh ency of 6 x 10 ¹⁵ s ⁻¹ ?	ich value is closest to the	
	(A) 10		(B) 25		
	(C) 50		(D) 75		
1.61					
101	The change in the oxidation	of CI when it reacts with dilute	e alkali is :		
	(A) 0 to -1, 0 to +5		(B) 0 to -1, 0 to +1		
	(C) 0 to -1, 0 to +3		(D) 0 to -1, Only		
162	Which is incorrect IUPAC nan	ne :-			
	(A) 3-Pentyne		(B) 3-Methyl-2-butanone		
	(C) 2-Ethyl-3-methyl-1-butene		(D) 3-Ethyl-2-methyl pentane		
163	n-butane reacts with Bra at 1	130° to give more amount of			
105	n-butane reacts with big at 1	(B)			
	(A) Br		(C) CH ₃	(D) all in equal amounts	
		$H_3C \rightarrow Br$			
	H ₃ C CH ₃		H ₃ C Di		
164					
164	2,4,6 trinitro chlorobenzene	on warming with water produ	ces		
	(A) Chlorobenzene		(B) Picric acid		
	(C) Phenol		(D) No compound C-Cl is stable		
165	Which is correct reaction?				
	(A)	(B)	(C)	(D)	
	$\mathrm{CH}_{3}\text{-}\mathrm{O}\text{-}\mathrm{C}_{2}\mathrm{H}_{5}\text{+}\mathrm{HI} \rightarrow \mathrm{C}_{2}\mathrm{H}_{5}\mathrm{I} + \mathrm{CH}_{3}\mathrm{OH}$	CH ₃ −O−C ₂ H ₅ +HI → 2CH ₃ I + H ₂ O	CH_3 -O- C_2H_5 +HI $\rightarrow 2C_2H_5OH + H_2O$	$\mathrm{CH}_3\!\!-\!\!\mathrm{O}\!\!-\!\!\mathrm{C}_2\mathrm{H}_5\!+\!\mathrm{HI}\!\rightarrow\!\mathrm{CH}_3\mathrm{I}\!+\!\mathrm{C}_2\mathrm{H}_5\mathrm{OH}$	
166	CH_3 HI(1mole)	• ?			
	(A)	(B)		(D)	
	$\begin{array}{c} \operatorname{HO-CH_2-CH_2-CH_2-CH_2-CH_2-CH_3} \\ \downarrow \\ I \end{array}$	СН ₃ —СН —СН ₂ —СН ₂ —СН ₂ —СН ₂ —I ОН	і—сн ₂ —сн ₂ —сн ₂ —Сн ₂ —Сн ₂ — Сн ₂ —ОН		

In the following reaction,

$$C_6H_5CH_2Br \xrightarrow{1. Mg, Ether}{2. H_3O^+} X$$
,
the product 'X' is
(A) $C_6H_5CH_2OCH_2C_6H_5$
(C) $C_6H_5CH_3$

(B) $C_6H_5CH_2OH$ (D) $C_6H_5CH_2CH_2C_6H_5$

176

In the following reaction, $C_6H_5CH_2Br \xrightarrow{1. Mg, Ether} X,$ $2. H_3O^+ X,$ the product 'X' is (A) $C_6H_5CH_2OCH_2C_6H_5$ (C) $C_6H_5CH_3$

(B) C₆H₅CH₂OH
 (D) C₆H₅CH₂CH₂CH₂C₆H₅

177

179

180

The sweetest sugar is

The alkene formed as a major product in the above elimination reaction is :

 (B) CH₂=CH₂ (D) _____Me

178 Which of the following is least reactive in a nucleophilic substitution reaction?

(A) $(CH_3)_3C - Cl$	(B) $CH_2 = CHCl$
(C) CH ₃ CH ₂ Cl	(D) $CH_2 = CHCH_2Cl$

 (A) Sucrose
 (B) Lactose
 (C) Galactose
 (D) Fructose

 Biodegradable polymer which can be produced from glycine and amino caproic acid is
 (A) buna-N
 (B) nylon 6, 6

 (C) nylon-2-nylon-6
 (D) PHBV

The synthesis of 3-octyne is achieved by adding a bromoalkane into a mixture of sodium amide and an alkyne. The bromoalkane and alkyne respectively are :

(A) BrCH2CH2CH2CH2CH3 and CH3CH2C=CH	(^{B)} BrCH2CH2CH3 and CH2CH2C≡CH
(c)	(▷)
BrCH ₂ CH ₂ CH ₂ CH ₂ CH ₃ and CH ₃ C=CH	BrCH2CH2CH2CH3 and CH3CH2C≡CH

183 Which of the following vitamins contains isoprene unit ?

(A) vitamin A	(B) vitamin B ₂
(C) vitamin C	(D) vitamin D

Which of the following product will be obtained when neopentyl alcohol is treated with conc. HCl in presence of ZnCl2.

(A) t– butyl chloride	(B) isobutylene		
(C) t- pentyl chloride	(D) Neo pentyl chloride		
$\mathrm{CH}_{\operatorname{3}}\mathrm{COOH} - \overset{\mathrm{SOCI}_2}{\longrightarrow} \mathrm{A} - \overset{\mathrm{NH}_3}{\longrightarrow} \mathrm{B} - \overset{\mathrm{B}_5}{\underset{\mathrm{KOH}}{\longrightarrow}} \mathrm{C} - \overset{\mathrm{CHCI}_3}{\underset{\mathrm{KOH}}{\longrightarrow}} \mathrm{D}$			
Identify D in above reaction sequence.			
(A) CH ₃ CH ₂ NC	(B) CH ₃ – NC		
(C) CH ₃ CH ₂ OH	(D) CH ₃ CN		

Glucose and fructose gives same osazone. STATEMENT - 2 STATEMENT - 1During osazone formation stereochemistry at C₁ and C₂ is destrolysed.

(A)	(B)	(C)	(D)
Statement – 1 is True,	Statement – 1 is True,	Statement – 1 is True,	Statement – 1 is False,
Statement – 2 is True;	Statement – 2 is True;	Statement – 2 is False.	Statement – 2 is True.
Statement – 2 is a correct	Statement – 2 is NOT a correct		
explanation for Statement – 1.	explanation for Statement – 1.		

(I)
$$MeI + \overline{O}H \longrightarrow MeOH + I^{-}$$

(II) $MeI + NH_{3} \longrightarrow Me(\overrightarrow{NH_{3}}) + I^{-}$
(III) $Me_{2}^{\oplus}SMe + \overline{O}H \longrightarrow MeOH + Me_{2}S$
(IV) $Me_{2}^{\oplus}SMe + NH_{3} \longrightarrow MeNH_{3} + Me_{2}S$
in which of the SN₂ reaction rate of the reaction increases on increasing the polarity of the solvents
(A) | (B) ||` (C) ||| (D) |V|

Sucrose on hydrolysis gives

- (A) β -D-glucose + α -D-fructose (B) α -D-glucose + β -D-glucose
- (c) α -D-glucose + β -D-fructose

(D) α -*D*-fructose + β -*D*-fructose

192

The compressibility factor of a gas is greater than unity at 1 atm and 273 K. Therefore :-

(A) $V_m > 22.4 L$ (B) $V_m < 22.4 L$ (C) $V_m = 22.4 L$ (D) $V_m = 44.8 L$

193

194

Identify the major product formed in the following reaction

195 Ring structure of glucose is due to formation of hemiacetal and ring formation between

(A) C_1 and C_5 (B) C_1 and C_4 (C) C_1 and C_3 (D) C_3 and C_4

196 Which is a monomer of Neoprene in the following?

(B) $H_2C = CH-C \equiv CH$

(A)
$$H_2C = C - CH = CH_2$$

(B) $H_2C = CH - C = CH$
(C) $H_2C = CH - CH = CH_2$
(D) $H_2C = C - CH = CH_2$
 H_3

207					
	CH2 + CH2 COOH	$\xrightarrow{\text{Benzene}} ? \text{ The react}$	ion yields:		
	(A) a single product	(B) two products	(C) three products	(D) none of these	
198	1-chlorobutane on reduction	on with alcoholic KOH gives			
	(A) 1-butene	(B) 1-butanol	(C) 2-butene	(D) 2-butanol	
199	On treating glucose with Fehling's solution we get a precipitate whose colour is				
	(A) Yellow	(B) Red	(C) Black	(D) White	
200	Which of the follow zwitter ion?	ving compounds can f	form a		
	(A) Aniline		(B) Acetanilide		
	(c) Benzoic acid		(D) Glycine		